Virus Imaging

Select by virus name
About Images
Art Gallery
Covers Gallery
ICTV 8th Color Plates
PS10 Screen Saver   

Virus Structure Tutorials

Triangulation Number
Topography Maps 3D


Virology Links

In the News

- News -
- Video -
- Blogs -
 * Virology Highlights
- Flu & H1N1 - (CDC|WHO)

Journal Contents

Science
Nature
Nature Structural & Molecular Biology

Structure & Assembly (J.Virol)
Journal of Virology
J. General Virology
Retrovirology
Virology
Virology Journal
Virus Genes
Viruses

Educational Resouces


Video Lectures  NEW 
TextBook  NEW 
Educational Links
Educational Kids

Legacy

Archived Web Papers

Jean-Yves Sgro
Inst. for Mol.Virology
731B Bock Labs
1525 Linden Drive Madison, WI 53706

Current Papers in Structure and Assembly (Journal of Virology)

Journal of Virology Structure and Assembly

  • Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker [Structure and Assembly]

  • The retroviral Gag capsid (Gag-CA) interdomain linker is an unstructured peptide segment connecting structured N-terminal and C-terminal domains. Although the region is reported to play roles in virion morphogenesis and infectivity, underlying molecular mechanisms remain unexplored. To address this issue, we determined biological and molecular phenotypes of HIV-1 CA linker mutants by experimental and in silico approaches. Among the nine linker mutants tested, eight exhibited attenuation of viral particle production to various extents mostly in parallel with a reduction in viral infectivity. Sucrose density gradient, confocal microscopy, and live-cell protein interaction analyses indicated that the defect is accompanied by attenuation of Gag-Gag interactions following Gag plasma membrane targeting in the cells. In silico analyses revealed distinct distributions of interaction-prone hydrophobic patches between immature and mature CA proteins. Molecular dynamics simulations predicted that the linker mutations can allosterically alter structural fluctuations, including the interaction surfaces apart from the mutation sites in both the immature and mature CA proteins. These results suggest that the HIV-1 CA interdomain linker is a cis-modulator of the CA interaction surfaces to optimize efficiency of Gag assembly, virion production, and viral infectivity.

    IMPORTANCE HIV-1 particle production and infection are highly ordered processes. Viral Gag proteins play a central role in the assembly and disassembly of viral molecules. Of these, capsid protein (CA) is a major contributor to the Gag-Gag interactions. CA consists of two structured domains, i.e., N-terminal (NTD) and C-terminal (CTD) domains, connected by an unstructured domain named the interdomain linker. While multiple regions in the NTD and CTD are reported to play roles in virion morphogenesis and infectivity, the roles of the linker region in Gag assembly and virus particle formation remain elusive. In this study, we showed by biological and molecular analyses that the linker region functions as an intramolecular modulator to tune Gag assembly, virion production, and viral infectivity. Our study thus illustrates a hitherto-unrecognized mechanism, an allosteric regulation of CA structure by the disordered protein element, for HIV-1 replication.

  • Progeny Varicella-Zoster Virus Capsids Exit the Nucleus but Never Undergo Secondary Envelopment during Autophagic Flux Inhibition by Bafilomycin A1 [Structure and Assembly]

  • Varicella-zoster virus (VZV) is an alphaherpesvirus that lacks the herpesviral neurovirulence protein ICP34.5. The underlying hypothesis of this project was that inhibitors of autophagy reduce VZV infectivity. We selected the vacuolar proton ATPase inhibitor bafilomycin A1 for analysis because of its well-known antiautophagy property of impeding acidification during the late stage of autophagic flux. We documented that bafilomycin treatment from 48 to 72 h postinfection lowered VZV titers substantially (P lle; 0.008). Because we were unable to define the site of the block in the infectious cycle by confocal microscopy, we turned to electron microscopy. Capsids were observed in the nucleus, in the perinuclear space, and in the cytoplasm adjacent to Golgi apparatus vesicles. Many of the capsids had an aberrant appearance, as has been observed previously in infections not treated with bafilomycin. In contrast to prior untreated infections, however, secondary envelopment of capsids was not seen in the trans-Golgi network, nor were prototypical enveloped particles with capsids (virions) seen in cytoplasmic vesicles after bafilomycin treatment. Instead, multiple particles with varying diameters without capsids (light particles) were seen in large virus assembly compartments near the disorganized Golgi apparatus. Bafilomycin treatment also led to increased numbers of multivesicular bodies in the cytoplasm, some of which contained remnants of the Golgi apparatus. In summary, we have defined a previously unrecognized property of bafilomycin whereby it disrupted the site of secondary envelopment of VZV capsids by altering the pH of the trans-Golgi network and thereby preventing the correct formation of virus assembly compartments.

    IMPORTANCE This study of VZV assembly in the presence of bafilomycin A1 emphasizes the importance of the Golgi apparatus/trans-Golgi network as a platform in the alphaherpesvirus life cycle. We have previously shown that VZV induces levels of autophagy far above the basal levels of autophagy in human skin, a major site of VZV assembly. The current study documented that bafilomycin treatment led to impaired assembly of VZV capsids after primary envelopment/de-envelopment but before secondary reenvelopment. This VZV study also complemented prior herpes simplex virus 1 and pseudorabies virus studies investigating two other inhibitors of endoplasmic reticulum (ER)/Golgi apparatus function: brefeldin A and monensin. Studies with porcine herpesvirus demonstrated that primary enveloped particles accumulated in the perinuclear space in the presence of brefeldin A, while studies with herpes simplex virus 1 documented an impaired secondary assembly of enveloped viral particles in the presence of monensin.